Accidental Scientists IELTS Reading Answers with Explanation

Luyện tập đề IELTS Reading Practice với passage Accidental Scientists được lấy từ cuốn sách IELTS Actual Test 3 - Test 3 - Passage 3 với trải nghiệm thi IELTS trên máy và giải thích đáp án chi tiết bằng Linearthinking, kèm list từ vựng IELTS cần học trong bài đọc.

Accidental Scientists IELTS Reading Answers with Explanation

📖 Bài đọc (reading passage)

Accidental Scientists
A. A paradox lies close to the heart of scientific discovery. If you know just what you are looking for, finding it can hardly count as a discovery, since it was fully anticipated. But if, on the other hand, you have no notion of what you are looking for, you cannot know when you have found it, and discovery, as such, is out of the question. In the philosophy of science, these extremes map onto the purist forms of deductivism and inductivism: In the former, the outcome is supposed to be logically contained in the premises you start with; in the latter, you are recommended to start with no expectations whatsoever and see what turns up.
B. As in so many things, the ideal position is widely supposed to reside somewhere in between these two impossible-to-realise extremes. You want to have a good enough idea of what you are looking for to be surprised when you find something else of value, and you want to be ignorant enough of your end point that you can entertain alternative outcomes. Scientific discovery should, therefore, have an accidental aspect, but not too much of one. Serendipity is a word that expresses a position something like that. It’s a fascinating word, and the late Robert King Merton—“the father of the sociology of science”—liked it well enough to compose its biography, assisted by the French cultural historian Elinor Barber.
C. The word did not appear in the published literature until the early 19th century and did not become well enough known to use without explanation until sometime in the first third of the 20th century. Serendipity means a “happy accident” or “pleasant surprise”, specifically, the accident of finding something good or useful without looking for it. The first noted use of “serendipity” in the English language was by Horace Walpole. He explained that it came from the fairy tale, called The Three Princes of Serendip (the ancient name for Ceylon, or present day Sri Lanka), whose heroes “were always making discoveries, by accidents and sagacity, of things which they were not in quest of’.
D. Antiquarians, following Walpole, found use for it, as they were always rummaging about for curiosities, and unexpected but pleasant surprises were not unknown to them. Some people just seemed to have a knack for that sort of thing, and serendipity was used to express that special capacity. The other community that came to dwell on serendipity to say something important about their practice was that of scientists, and here usages cut to the heart of the matter and were often vigorously contested. Many scientists, including the Harvard physiologist Walter Cannon and, later, the British immunologist Peter Medawar, liked to emphasise how much of scientific discovery was unplanned and even accidental. One of the examples is Hans Christian Orsted’s discovery of electromagnetism when he unintentionally brought a current-carrying wire parallel to a magnetic needle. Rhetoric about the sufficiency of rational method was so much hot air. Indeed, as Medawar insisted, “There is no such thing as The Scientific Method,” no way at all of systematising the process of discovery. Really important discoveries had a way of showing up when they had a mind to do so and not when you were looking for them. Maybe some scientists, like some book collectors, had a happy knack; maybe serendipity described the situation rather than a personal skill or capacity.
E. Some scientists using the word meant to stress those accidents belonging to the situation; some treated serendipity as a personal capacity; many others exploited the ambiguity of the notion. Yet what Cannon and Medawar took as a benign nose-thumbing at Dreams of Method, other scientists found incendiary. To say that science had a significant serendipitous aspect was taken by some as dangerous denigration. If scientific discovery were really accidental, then what was the special basis of expert authority? In this connection, the aphorism of choice came from no less an authority on scientific discovery than Louis Pasteur: “Chance favors the prepared mind.” Accidents may happen, and things may turn up unplanned and unforeseen, as one is looking for something else, but the ability to notice such events, to see their potential bearing and meaning, to exploit their occurrence and make constructive use of them—these are the results of systematic mental preparation. What seems like an accident is just another form of expertise. On closer inspection, it is insisted, accident dissolves into sagacity.
F. The context in which scientific serendipity was most contested and had its greatest resonance was that connected with the idea of planned science. The serendipitists were not all inhabitants of academic ivory towers. As Merton and Barber note, two of the great early-20th-century American pioneers of industrial research—Willis Whitney and Irving Langmuir, both of General Electric—made much play of serendipity, in the course of arguing against overly rigid research planning. Langmuir thought that misconceptions about the certainty and rationality of the research process did much harm and that a mature acceptance of uncertainty was far more likely to result in productive research policies. For his own part, Langmuir said that satisfactory outcomes “occurred as though we were just drifting with the wind. These things came about by accident. ” If there is no very determinate relationship between cause and effect in research, he said, “then planning does not get us very far.” So, from within the bowels of corporate capitalism came powerful arguments, by way of serendipity, for scientific spontaneity and autonomy. The notion that industry was invariably committed to the regimentation of scientific research just doesn’t wash.
G. In 1936, as a very young man, Merton wrote a seminal essay on “The Unanticipated Consequences of Purposive Social Action. ” It is, he argued, the nature of social action that what one intends is rarely what one gets: Intending to provide resources for buttressing Christian religion, the natural philosophers of the Scientific Revolution laid the groundwork for secularism; people wanting to be alone with nature in Yosemite Valley wind up crowding one another. We just don’t know enough—and we can never know enough—to ensure that the past is an adequate guide to the future: Uncertainty about outcomes, even of our best-laid plans, is endemic. All social action, including that undertaken with the best evidence and formulated according to the most rational criteria, is uncertain in its consequences.

❓ Câu hỏi (questions)

Question 1 - 6
Choose the most suitable heading for paragraphs A-G from the list of headings below. 
List of Headings
Examples of some scientific discoveries
Horace Walpole’s fairy tale
Resolving the contradiction
What is the Scientific Method
The contradiction of views on scientific discovery
Some misunderstandings of serendipity
Opponents of authority
Reality doesn’t always match expectation
How the word came into being
Illustration of serendipity in the business sector
Paragraph A
Paragraph C
Paragraph D
Paragraph E
Paragraph F
Paragraph G
Question 7 - 11
Choose the correct letter A, B, C or D.
In paragraph A, the word “inductivism” means
anticipate results in the beginning.
work with prepared premises.
accept chance discoveries.
look for what you want.
Medawar says “there is no such thing as The Scientific Method” because
discoveries are made by people with determined mind.
discoveries tend to happen unplanned.
the process of discovery is unpleasant.
serendipity is not a skill.
Many scientists dislike the idea of serendipity because
it is easily misunderstood and abused.
it is too unpredictable.
it is beyond their comprehension.
it devalues their scientific expertise.
The writer mentions Irving Langmuir to illustrate
planned science should be avoided.
industrial development needs uncertainty.
people tend to misunderstand the relationship between cause and effect.
accepting uncertainty can help produce positive results.
The example of Yosemite is to show
the conflict between reality and expectation.
the importance of systematic planning.
the intention of social action.
the power of anticipation.
Question 12 - 14
Answer the questions below.
Choose NO MORE THAN TWO WORDS from the passage for each answer.
Who is the person that first used the word “serendipity”?
What kind of story does the word come from?
What is the present name of serendip?

🔥 Answer key (đáp án và giải thích)


Giải thích chi tiết

smiley26 Áp dụng đọc connection với Linearthinking để nắm main idea:

Câu 1 Phát hiện khoa học có một nghịch lý

Câu 2 + 3 bổ sung cho câu 1

Câu 4 nói về 2 dạng nghiên cứu đối lập nhau: deductivism (nghiên cứu dựa trên những gì đã biết, dự đoán) và inductivism (nghiên cứu mà không hề biết sẽ phải mong đợi điều gì, hay cái gì sẽ được phát hiện)

=> Main idea: Đoạn này nói về paradox (=contradiction) của scientific discovery và giải thích 2 thái cực đối lập: deductivism + inductivism

Xem full giải thích